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1 Electrostatics
Here we define

r = r− r′ r = |r− r′|
where r is the point of interest, and r′ is the position of the source charge.

1.1 Coulomb’s Law
For a point charge q at r′, the electric field is

E(r) =
1

4πε0

q

r2 r̂

For a continuous charge distribution,

E(r) =
1

4πε0

∫
ρ(r′)

r
r2 r̂ dτ ′

1.2 Gauss’s Law
Gauss’s law is derived by integrating the flux through a closed surface.∮

S
E · da =

Qin

ε0

With divergence theorem, which is ∫
∇ · E dτ =

∮
S
E · da

we get
∇ · E =

ρ

ε0

1.3 Divergence and Curl of E
The divergence of E is given by Gauss’s law. For the curl, we find that the integral of E is 0,∮

E · dl = 0

Using Stokes’ theorem, which is ∫
(∇× E) · da =

∮
E · dl

we get the curl of E,
∇× E = 0
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1.4 Potential
If we define V = 0 at infinity, then

V (r) = −
∫ r

∞
E · dl

which is
V (r) = − 1

4πε0

∫
ρ(r′)

r dτ ′

Using the fundamental theorem for gradient, which is

V (b)− V (a) =
∫ b

a
∇V · dl

we get
E = −∇V

Rewrite∇ · E in terms of V , we get Poisson’s equation,

∇2V = − ρ

ε0

and Laplace’s equation,
∇2V = 0

1.5 Energy
The energy of a charge distribution is given by

W =
1

2

∫
ρV dτ = −ε0

2

∫
V∇2V dτ

Integration by part, and using the fact that V = 0 at∞, we get

W =
ε0
2

∫
E2dτ

where the integration is over all space.
Notice that the energy can be interpreted as the consequence of Coulomb’s force, but we can also
think of it as the energy stored in the E field surrounding the charges. The energy density of the E
field is thus

w =
ε0
2
E2

Notice that from w the energy is always non-negative. This is because w contains the “self-energy”
contributions of charges, while the previous treatment does not.
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1.6 Conductors
An ideal conductor has the following properties,

1. ρ = 0 inside the conductor,

2. any net charge resides on the surface,

3. it is equipotential (including surface),

4. near the surface, E is perpendicular to the surface.

1.7 More on Potential
We could use multipole expansion to approximate a potential. The basic idea is to expand V using a
Taylor expansion. We have

V (r) =
1

4πε0

∫
ρ(r′)

r dτ ′

When we are far from the distribution, we can expand the 1/r term. This will yield the multipole
expansion.

The dipole term is of great importance. It is given by

Vdip(r) =
1

4πε0

1

r2

∫
r′ cosαρ(r′)dτ ′

where α is the angle between r and r′. We difine the dipole moment of the charge distribution to be

p =

∫
r′ρ(r′)dτ ′

Then we can write
Vdip(r) =

1

4πε0

P · r̂
r2

Xukun Lin 5



Electromagnetism

2 Electric Fields in Matter
The matter we will discuss is dielectrics, whose nickname is insulators.

2.1 Polarization
Polarization P is defined to be the dipole moment per unit volume. So the following relation holds,

p =

∫
Pdτ

The potential of a dipole now becomes

Vdip(r) =
1

4πε0

∫
P · r̂
r2 dτ ′

Note that in the integral r is replaced by r. This is because P is not relative to one particular point,
but relative to its dτ ′. So we have to treat the distribution as infinitely many small dipoles rather than
one dipole. We have

∇′
(
1

r

)
=

r̂
r2

So
Vdip(r) =

1

4πε0

∫
P ·∇′

(
1

r

)
dτ ′

Vector identities and divergence theorem gives

Vdip(r) =
1

4πε0

∮
P
r · da− 1

4πε0

∫
1

r(∇
′ · P)dτ ′

Comparing the equation to potential expressions, we get

σb = P · n̂ ρb = −∇′ · P

where subscript b stands for bound charge. Note that we should consider either P or σb and ρb, but
not both, since they are equivalent representation of the same effect. The two equations serve simply
for conversions.

2.2 Electric Displacement
In dielectric, we have

ρ = ρf + ρb

where f stands for free charge. So the Gauss’s law reads

ε0∇ · E = ρ = ρb + ρf = −∇ · P+ ρf

therefore,
∇ · (ε0E+ P) = ρf
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Define the electric displacement D by
D = ε0E+ P

Then
∇ · D = ρf

Note that D is known as long as we know the free charge distribution. The problem of bound charges
(are hence dielectric) are not present. Also note that in Gauss’s law E is always the total field, and in
this case there is no such thing as an induced field. The boundary conditions for D are simple,

D⊥
above −D⊥

below = 0

D‖
above − D‖

below = P‖
above − P‖

below

2.3 Linear Dielectrics
For linear dielectrics,

P = ε0χeE

So
D = ε0(1 + χe)E = εE

where we define the permittivity
ε = ε0(1 + χe)

We also define
εr =

ε

ε0
= 1 + χe
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3 Magnetostatics

3.1 Magnetic Force
Magnetic force is given by

F = q(v× B)

For a current, we have

F =

∫
(v× B)dq =

∫
(v× B)λdl =

∫
I(dl× B)

The surface and volume charge densities are given by

K = σv J = ρv

The continuity equation for charge is

∇ · J = −∂ρ

∂t

3.2 The Biot-Savart Law
The magnetic field of a steady line current is given by

B(r) =
µ0

4π

∫
I× r̂

r2 dl′

Note that for a straight wire, B is always perpendicular to the wire.

3.3 Divergence and Curl of B
One form of the Biot-Savart law is

B(r) =
µ0

4π

∫
J× r̂

r2 dτ ′

Using a vector identity, we can write

∇ · B =
µ0

4π

∫ [
r̂
r2 · (∇× J)− J ·

(
∇×

r̂
r2

)]
dτ ′

J is a property of the distribution, which means J = J(r′). So the first term is 0. We can prove that
∇× (rnr̂) = 0, so the second term is also 0. Therefore,

∇ · B = 0

Using a different vector identity, we have

∇× B =
µ0

4π

∫ [(
r̂
r2 ·∇

)
J− (J ·∇)

r̂
r2 + J

(
∇ ·

r̂
r2

)
−

r̂
r2 (∇ · J)

]
dτ ′
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which simplifies to

∇× B =
µ0

4π

∫ [
J
(
∇ ·

r̂
r2

)
− (J ·∇)

r̂
r2

]
dτ ′

We can prove that

∇ ·
r̂
r2 = 4πδ3(r)

For the second term, note that

(J ·∇)
r̂
r2 = − (J ·∇′)

r̂
r2

The point here is that we want to be able to manipulate J to allow some tricks. Then we consider each
component of r̂/r2 and use vector identities, and finally we can prove that

(J ·∇′)
r̂
r2 = 0

Therefore,
∇× B = µ0J

3.4 Ampère’s Law
Using Stokes’ theorem, we get∮

B · dl =
∫

(∇× B) · da = µ0

∫
J · da = µ0Ienc

which is called Ampère’s law.

3.5 Magnetic Vector Potential
The vector potential A satisfies

B = ∇× A

There is still freedom in determiningA. It is proved that for any B, we can always pick anA such that

∇ · A = 0

Substitute A into Ampère’s law, we get

∇2A = −µ0J

This is nothing but three Poisson’s equations. If J is 0 at infinity, the solution is

A(r) =
µ0

4π

∫
J
rdτ

′

The boundary conditions for B are
B⊥

above = B⊥
below

B
‖
above −B

‖
below = µ0K
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4 Magnetic Fields in Matter

4.1 Magnetization
Magnetic dipole momentm is defined for a closed current loop by

m = I

∫
da

MagnetizationM is the magnetic dipole moment per unit volume. So

m =

∫
Mdτ

Just like V , we can do a multipole expansion for A. The dipole term is

Adip(r) =
µ0

4π

m× r̂
r2

Using the same procedure of V , we arrive at

Adip(r) =
µ0

4π

∫
1

r(∇
′ ×M)dτ ′ +

µ0

4π

∮
1

r(M× da′)

Just like ρ is the source of V as Poisson’s equation indicates, J is the source of A. Comparing expres-
sions of A, we get

Jb = ∇′ ×M Kb = M× n̂

4.2 The Auxiliary Field H
Again similar to ρ, we can write

J = Jb + Jf
Ampère’s law reads

1

µ0

∇× B = Jb + Jf = ∇×M+ Jf

So
∇×

(
1

µ0

B−M
)

= Jf

Define
H =

1

µ0

B−M

Then Ampère’s law becomes
∇×H = Jf

4.3 Linear Media
In linear media, we have

M = χmH
So

B = µ0(1 + χm)H = µH
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5 Electrodynamics

5.1 Electromotive Force
5.1.1 Ohm’s Law

In most cases, the current density is proportional to the force per unit charge. That is

J = σf

where σ is called conductivity and material-dependent. ρ = 1/σ is called resistivity.
f is normally electromagnetic force, so

J = σ(E+ v× B)

Assume that the second term is small, which is true for many applications, we get

J = σE

This is Ohm’s law. From this we can derive some more familiar equations, such as V = IR, P = I2R,
and so on. Note that effects such as collisions are taken care by σ, and E is irrelevant to those effects.

We have
∇ · E =

1

σ
∇ · J = − 1

σ

∂ρ

∂t
For steady current and uniform conductivity,

∇ · E = 0

hence we can use electrostatic tools for E, even though there is a current.
Note that we require steady current and uniform σ.

5.1.2 Electromotive Force

When there is a source (eg. battery) in the circuit,

f = fs + E

where fs is the force due to the source, for example chemical force. And E is the electrostatic field.
Note that E affects the whole circuit, while fs is confined in the source.
The electromotive force is defined by

E =

∮
f · dl =

∮
fs · dl

For an ideal source of emf, σ → ∞. So a finite J means f = 0, which indicates that inside the source

fs = −E

Suppose the two nodes of the source are a and b. Then the potential difference is

V = −
∫ b

a

E · dl =
∫ b

a

fs · dl =
∮

fs · dl = E
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5.1.3 Motional emf

We can get motional emf by moving a wire through a magnetic field. Suppose a wire of length h is
moving in a B field with v, then

E =

∮
(v× B) · dl = vBh

Let Φ be the flux of B through the loop, that is

Φ =

∫
B · da

Then we can prove that

E = −dΦ

dt

5.2 Electromagnetic Induction
5.2.1 Faraday’s Law

According to Faraday’s experiments,

1. if B field is fixed and we move the loop, there is an emf,

2. if the loop is fixed and B field is moving, there is an emf,

3. if both field and loop are fixed but the strength is changed, there is an emf.

For the last 2 cases no magnetic force is present, since v = 0. So there has to be an electric field. As
experimentally verified, in all 3 cases the emf satisfies

E = −dΦ

dt

So for the last 2 case, we should have ∮
E · dl =

∫
−∂B

∂t
· da

where the integration of da is over the whole loop, not just the part covered by B.
Using Stokes’ theorem, we get

∇× E = −∂B
∂t

This is Faraday’s law. Note that this reduces to ∇× E = 0 in the static case.

To get the direction of the induced current correct, we apply Lenz’s law, which says that the induced
current flows in such a direction that the flux it produces tends to cancel the change.
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5.2.2 Inductance

Suppose we have two loops, and loop 1 has a current I1. According to Biot-Savart law, the flux through
loop 2 is proportional to I1, that is

Φ2 = M21I1

We have
Φ2 =

∫
B1 · da2 =

∫
(∇× A1) · da2 =

∮
A1 · dl2

Since B1 vanishes at infinity, we have

A1 =
µ0I1
4π

∮
dl1
r

Hence
Φ2 =

µ0I1
4π

∮ ∮
dl1 · dl2

r
which means

M21 =
µ0

4π

∮ ∮
dl1 · dl2

r
Evidently,

M21 = M12 (= M)

So as long as I1 = I2, Φ2 (when I1 flows) is same to Φ1 (when I2 flows).

Now suppose I1 flows. The flux Φ1 is also proportional to I1, so

Φ1 = LI1

where L is called inductance. Every time I1 changes, Φ2 changes, so there is an E2 in loop 2. Φ1 also
changes, so there is an E1 in loop 1 too. We have

E1 = −L
dI1
dt

5.2.3 Energy in Magnetic Fields

If we start from no current and build it up to I , work has to be done against the emf. The work done
is

W =
1

2
LI2

Starting from here, we can derive that the energy stored in a magnetic field is

W =
1

2µ0

∫
B2dτ
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5.3 Maxwell’s Equations
5.3.1 Maxwell’s Equations

Now we have the following 4 equations,

∇ · E =
ρ

ε0
∇× E = −∂B

∂t

∇ · B = 0 ∇× B = µ0J

The problem arises when we consider divergence of the last equation.

∇ · (∇× B) = µ0∇ · J

The left part is always 0, but the right part, in general, is not. To solve the problem, we apply the
continuity equation,

∇ · J = −∂ρ

dt
= − ∂

∂t
(ε0∇ · E) = −∇ ·

(
ε0
∂E
∂t

)
So it makes sense to make the following change,

∇× B = µ0J+ µ0ε0
∂E
∂t

This means a changing electric field also induces a magnetic field. We define displacement current Jd
by

Jd = ε0
∂E
∂t

Finally, we get Maxwell’s equations,

∇ · E =
ρ

ε0
∇× E = −∂B

∂t

∇ · B = 0 ∇× B = µ0J+ µ0ε0
∂E
∂t

5.3.2 Maxwell’s Equations in Matter

We want to rewrite the 4 Maxwell’s equations for use in matter. Now, we have the bound charge and
bound current,

ρb = −∇ · P Jb = ∇×M

When things become nonstatic, a change in ρb, hence P, could lead to current. If we consider a rod
with ±σ on each end surface (area dA), we have

dI =
∂σ

∂t
dA =

∂P

∂t
dA
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So we define polarization current,

Jp =
∂P
∂t

Note that the continuity equation is satisfied,

∇ · Jp =
∂

∂t
(∇ · P) = −∂ρb

∂t

A changingM, however, leads to nothing new but a changing Jb, which we have already considered.

With the modification, we have

∇× B = µ0

(
Jf +∇×M+

∂P
∂t

)
+ µ0ε0

∂E
∂t

or
∇×H = Jf +

∂D
∂t

So Maxwell’s equations in matter can be written,

∇ · D = ρf ∇× E = −∂B
∂t

∇ · B = 0 ∇×H = Jf +
∂D
∂t

Note that we have to keep E and B, which means to use these equations we need knowledge about
conversions. In this context, the displacement current is

Jd =
∂D
∂t
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6 Conservation Laws
The total energy stored in EM field, per unit volume, is given by (as shown in previous sections)

u =
1

2

(
ε0E

2 +
1

µ0

B2

)
Now suppose we have a charge distribution that produces E and B at t. At t+dt, the fields will change
the charge distribution and do work. For a charge q, the work done by the fields is

dW = q(E+ v× B) · vdt = qE · vdt

Recall that J = ρv, so for all charges in a volume V , we have

dW

dt
=

∫
V
E · Jdτ

We want to express J in terms of the field (B). Using Maxwell’s equations, we have

E · J = 1

µ0

E · (∇× B)− ε0E · ∂E
∂t

Using one of the vector identities, we get

E · (∇× B) = ∇ · (B× E) + B · (∇× E) = ∇ · (B× E)− B · ∂B
∂t

We also have
E · ∂E

∂t
=

1

2

∂

∂t
(E2) B · ∂B

∂t
=

1

2

∂

∂t
(B2)

So

E · J = 1

µ0

∇ · (B× E)− 1

µ0

B · ∂B
∂t

− ε0E · ∂E
∂t

= −1

2

∂

∂t

(
ε0E

2 +
1

µ0

B2

)
− 1

µ0

∇ · (E× B)

Therefore, using the divergence theorem,

dW

dt
= − d

dt

∫
V

(
ε0E

2 +
1

µ0

B2

)
dτ − 1

µ0

∮
S
(E× B) · da

This is Poynting’s theorem. Remember that W is the work done by fields, not the energy stored
in them. The 1st term is the change of energy stored in V ; the 2nd term is evidently the energy
transported out of V . Suppose that the charge distribution is unchanged but the EM energy in V
increases, that is, LHS is 0 and the 1st term on RHS is negative. Physically, there must be some energy
that is transported into V ; mathematically, the 2nd term on RHS must be positive. If we define the
Poynting vector,

S =
1

µ0

(E× B)
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we see that ∮
S

(S× B) · da

needs to be negative, which means S is in general pointing towards V (energy also needs to flow in
this direction for the energy in V to increase). So we see that S is the energy flux (per unit time)
density (per unit area).

With Poynting vector, we can rewrite Poynting’s theorem as

dW

dt
= − d

dt

∫
V
udτ −

∮
S
S · da

If there is no work done to charges (eg. empty space), we have

∇ · S = −∂u

∂t

which is the continuity equation for energy.
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7 Electromagnetic Waves

7.1 1D Waves
Mathematically, a wave is any function f such that

f(x, t) = g(x− vt)

We can use Newton’s second law to examine a rope to get the wave equation,

∂2f

∂x2
=

1

v2
∂2f

∂t2

Evidently, all f = g(x− vt) satisfies the wave equation. But due to the square in the equation, there
is another type of solutions, which is simply h(x+ vt). So the general solution to the wave equation
is

f(x, t) = g(x− vt) + h(x+ vt)

7.2 Electromagnetic Waves in Vacuum
In vacuum, Maxwell’s equations are

∇ · E = 0 ∇× E = −∂B
∂t

∇ · B = 0 ∇× B = µ0ε0
∂E
∂t

We take the curl of the right column,

∇× (∇× E) = ∇(∇ · E)−∇2E = −∇2E = − ∂

∂t
(∇× B) = −µ0ε0

∂2E
∂t2

∇× (∇× B) = ∇(∇ · B)−∇2B = −∇2B = µ0ε0
∂

∂t
(∇× E) = −µ0ε0

∂2B
∂t2

That is,

∇2E = µ0ε0
∂2E
∂t2

∇2B = µ0ε0
∂2B
∂t2

Referring to the wave equation, we see that in vacuum the speed of electromagnetic waves is

v =
1

√
µ0ε0

= c = 299, 792, 458m/s

This is where people start to realize that light is possibly an EM wave.

Now suppose we have a monochromatic plane wave propagating in x direction. Then (ignoring rela-
tive phase)

E = E0e
i(kx−ωt) B = B0e

i(kx−ωt)
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But Maxwell’s equations put more constraints on the waves. Since∇ ·E = 0 and∇ ·B = 0, we have

ikE · x̂ = 0 ikB · x̂ = 0

which means
Ex = 0 Bx = 0

That is, in vacuum, electromagnetic waves are transverse: E and B are always perpendicular to the
propagation direction. In addition, from∇× E = −∂B/∂t, we have

−∂Ez

∂x
ŷ+

∂Ey

∂x
ẑ = iωB

or more compactly,

B =
k

ω
(x̂× E) =

1

c
(k̂× E)

This means E and B are in phase and mutually perpendicular.

The energy flow of EM waves is still governed by Poynting vector S.

7.3 Electromagnetic Waves in Matter
Suppose

1. there is no free charge or current,

2. the material is linear, so D = εE, B = µH,

3. the material is homogeneous, so that µ and ε are constants.

Then matter-form Maxwell’s equations reduce to

∇ · E = 0 ∇× E = −∂B
∂t

∇ · B = 0 ∇× B = µε
∂E
∂t

Note that now µ0ε0 is replaced by µε. So the wave speed is

v =
1

√
µε

=
c

n

where the index of refraction n is defined by

n =

√
µε

µ0ε0

All previous conclusions for vacuum waves hold for EM waves in matter, which the trivial replace-
ments µ0 → µ, ε0 → ε.
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