Tensor

- Let $\mathcal{L}(\mathcal{V}_M, \mathcal{W}_N)$ denote the vector space of all linear transformations from \mathcal{V} to \mathcal{W} . Let $\mathcal{M}_{N \times M}$ denote the vector space of all $N \times M$ matrices. Then $\mathcal{L}(\mathcal{V}_M, \mathcal{W}_N) \cong \mathcal{M}_{N \times M}$. So $\mathcal{L}(\mathcal{V}_M, \mathcal{W}_N)$ has dimension $M \cdot N$.
- The *dual space* \mathcal{V}^* of a vector space \mathcal{V} is the space $\mathcal{L}(\mathcal{V}, \mathbb{R})$. And we have $\dim(\mathcal{V}^*) = \dim(\mathcal{V})$.
- Suppose {e_i}^N_{i=1} is a basis for the vector space V_N. The *dual* of this basis is {ε^j}^N_{j=1}, which is a basis for V^{*}, and has the property ε^j(e_i) = δ^j_i.
- A map $\mathbf{T} : \mathcal{V}_1 \times \mathcal{V}_2 \times \cdots \times \mathcal{V}_r \to \mathcal{W}$ is called *r*-linear if it is linear in all its variables.
- Let $\tau_1 \in \mathcal{V}_1^*$ and $\tau_2 \in \mathcal{V}_2^*$. Then we can construct a bilinear map $\tau_1 \otimes \tau_2 : \mathcal{V}_1 \times \mathcal{V}_2 \to \mathbb{R}$ by $\tau_1 \otimes \tau_2(\mathbf{v}_1, \mathbf{v}_2) = \tau_1(\mathbf{v}_1)\tau_2(\mathbf{v}_2)$

The expression $\tau_1 \otimes \tau_2$ is called the *tensor product* of τ_1 and τ_2 .

• Let $\mathbf{v} \in \mathcal{V}$. We define the mapping $\mathbf{v} : \mathcal{V}^* \to \mathbb{R}$ by

$$\mathbf{v}(oldsymbol{ au}) = oldsymbol{ au}(\mathbf{v})$$

- The bilinear map h : V^{*} × V → ℝ defined by h(τ, v) = τ(v) is called the *natural pairing* of V and V^{*} into ℝ. It is denoted by h(τ, v) = τ(v) = ⟨τ|v⟩.
- Let \mathcal{V} be a vector space with dual space \mathcal{V}^* . Then a *tensor of type* (r, s) is a multilinear mapping

$$\mathbf{\Gamma}_{s}^{r}: \underbrace{\mathcal{V}^{*} \times \mathcal{V}^{*} \cdots \times \mathcal{V}^{*}}_{r \text{ times}} \times \underbrace{\mathcal{V} \times \mathcal{V} \cdots \times \mathcal{V}}_{s \text{ times}} \to \mathbb{R}$$

All these tensors form a vector space, which is denoted by $\mathcal{T}_s^r(\mathcal{V})$. r is called the *contravariant* degree, and s is called the *covariant* degree.

• A tensor of type (0,0) is defined to be a scalar; a tensor of type (1,0) is a vector; a tensor of type (0,1) is a dual vector.