Tensor

- Let $\mathcal{L}(\mathcal{V}_M, \mathcal{W}_N)$ denote the vector space of all linear transformations from V to W. Let $\mathcal{M}_{N\times M}$ denote the vector space of all $N \times M$ matrices. Then $\mathcal{L}(\mathcal{V}_M, \mathcal{W}_N) \cong \mathcal{M}_{N \times M}$. So $\mathcal{L}(\mathcal{V}_M, \mathcal{W}_N)$ has dimension $M \cdot N$.
- The dual space \mathcal{V}^* of a vector space \mathcal{V} is the space $\mathcal{L}(\mathcal{V}, \mathbb{R})$. And we have $\dim(\mathcal{V}^*) = \dim(\mathcal{V})$.
- Suppose $\{e_i\}_{i=1}^N$ is a basis for the vector space \mathcal{V}_N . The *dual* of this basis is $\{\epsilon^j\}_{j=1}^N$, which is a basis for \mathcal{V}^* , and has the property $\boldsymbol{\epsilon}^j(\mathbf{e}_i) = \delta^j_i$ $\frac{j}{i}$.
- A map $\mathbf{T}: \mathcal{V}_1 \times \mathcal{V}_2 \times \cdots \times \mathcal{V}_r \to \mathcal{W}$ is called *r*-linear if it is linear in all its variables.
- Let $\bm{\tau}_1\in\mathcal{V}_1^*$ and $\bm{\tau}_2\in\mathcal{V}_2^*$. Then we can construct a bilinear map $\bm{\tau}_1\otimes\bm{\tau}_2:\mathcal{V}_1\times\mathcal{V}_2\to\mathbb{R}$ by $\boldsymbol{\tau}_1 \otimes \boldsymbol{\tau}_2 (\mathbf{v}_1, \mathbf{v}_2) = \boldsymbol{\tau}_1 (\mathbf{v}_1) \boldsymbol{\tau}_2 (\mathbf{v}_2)$

The expression $\tau_1 \otimes \tau_2$ is called the *tensor product* of τ_1 and τ_2 .

• Let $\mathbf{v} \in \mathcal{V}$. We define the mapping $\mathbf{v}: \mathcal{V}^* \to \mathbb{R}$ by

$$
\mathbf{v}(\boldsymbol{\tau}) = \boldsymbol{\tau}(\mathbf{v})
$$

- The bilinear map $\mathbf{h}: \mathcal{V}^* \times \mathcal{V} \to \mathbb{R}$ defined by $\mathbf{h}(\tau, \mathbf{v}) = \tau(\mathbf{v})$ is called the *natural pairing* of \mathcal{V} and \mathcal{V}^* into \mathbb{R} . It is denoted by $\mathbf{h}(\boldsymbol{\tau},\mathbf{v}) = \boldsymbol{\tau}(\mathbf{v}) = \langle \boldsymbol{\tau} | \mathbf{v} \rangle$.
- Let V be a vector space with dual space \mathcal{V}^* . Then a *tensor of type* (r, s) is a multilinear mapping \mathbf{T}_s^r $\mathcal{Y}^r_s: \mathcal{V}^* \times \mathcal{V}^* \cdots \times \mathcal{V}^*$ \overline{r} times \times \mathcal{V} \times \mathcal{V} \cdots \times \mathcal{V} \overline{s} times $\rightarrow \mathbb{R}$

All these tensors form a vector space, which is denoted by $\mathcal{T}_{s}^{r}(\mathcal{V})$. r is called the *contravariant* degree, and s is called the covariant degree.

• A tensor of type $(0, 0)$ is defined to be a scalar; a tensor of type $(1, 0)$ is a vector; a tensor of type $(0, 1)$ is a dual vector.