
Mathematical Analysis

Mathematical Analysis

Contents
1 The Real and Complex Number Systems 3

1.1 Ordered Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The Real Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 The Extended Real Number System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 The Complex Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Basic Topology 5
2.1 Finite, Countable, and Uncountable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Compact Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Perfect Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Connected Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Numerical Sequences and Series 9
3.1 Convergent Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Cauchy Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Upper and Lower Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Some Special Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Series of Non-negative Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.8 The Number e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.9 The Root and Ratio Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.10 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.11 Summation by Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.12 Absolute Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.13 Addition and Multiplication of Series . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.14 Rearrangements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Continuity 17
4.1 Limits of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Continuity and Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Continuity and Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Discontinuities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.6 Monotonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7 Infinite Limits and Limits at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Xukun Lin 1



Mathematical Analysis

5 Differentiation 22
5.1 The Derivative of a Real Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Mean Value Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 The Continuity of Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 L’Hôpital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Derivatives of Higher Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.7 Differentiation of Vector-valued Functions . . . . . . . . . . . . . . . . . . . . . . . . 24

6 The Riemann-Stieltjes Integral 25
6.1 Definition and Existence of the Integral . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Properties of the Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Integration and Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Integration of Vector-valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.5 Rectifiable Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Sequences and Series of Functions 31
7.1 Discussion of Main Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Xukun Lin 2



Mathematical Analysis

1 The Real and Complex Number Systems

1.1 Ordered Sets
1. An ordered set is a set on which an order, denoted by <, is defined.

2. Suppose S is an ordered set and E ⊂ S, if there exists β ∈ S such that x ≤ β for every x ∈ E,
then we say that E is bounded above, and β is an upper bound of E. Definitions of bounded
below and lower bound are similar.

3. Suppose S is an ordered set and E ⊂ S is bounded above. If

(a) α is an upper bound of E,

(b) if γ < α then γ is not an upper bound of E,

Then we say that α is the least upper bound ofE, and we write α = supE. Similarly, the greatest
lower bound can be defined, and we write α = infE.

4. An ordered set S is said to have the least upper bound property if
if (1) E ⊂ S, (2) E is not empty, (3) E is bounded above, then supE exists in S.

5. Suppose S is an ordered set with the least upper bound property, and B ⊂ S, B is not empty,
B is bounded below. Let L be the set of all lower bounds of B, then α = supL exists, and
α = infB.

1.2 Fields
1. An ordered field is a field that is also an ordered set, such that

(a) x+ y < x+ z if x, y, z ∈ F and y < z,

(b) xy > 0 if x, y ∈ F , x > 0, y > 0.

2. From the field axioms and 6, all the familiar rules for inequalities can be derived.

1.3 The Real Field
1. There exists an ordered field R which has the least upper bound property, and R contains Q as

a subfield.

2. If x, y ∈ R, and x > 0, then there exists a positive integer n such that nx > y.
If x, y ∈ R, and x < y, then there exists p ∈ Q such that x < p < y.

3. For every real x > 0 and every integer n > 0 there is one and only one real y such that yn = x.
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1.4 The Extended Real Number System
1. The extended real number system consists of the real field R and two symbols, −∞ and +∞.

If a subset E ⊂ R is nonempty and is not bounded above, then +∞ = supE in the extended
real number system.

1.5 The Complex Field
1. A complex number is an ordered pair (a, b) of real numbers. Suppose x = (a, b) and y = (c, d),

then we define

(a) x+ y = (a+ c, b+ d)

(b) xy = (ac− bd, ad+ bc)

2. The above definitions turn the set of all complex numbers into a field, with identity (0, 0) and
unity (1, 0).

3. i = (0, 1)

4. If z is a complex number, its absolute value |z| is the non-negative square root of zz; that is,
|z| =

√
zz.

5. If a1, . . . , an and b1, . . . , bn are complex numbers, then∣∣∣∣∣
n∑

j=1

ajbj

∣∣∣∣∣
2

≤

(
n∑

k=1

|ak|2
)(

n∑
l=1

|bl|2
)

1.6 Euclidean Spaces
1. The familiar vector spaceRk with the normal inner product and norm defined is called Euclidean

k-space.
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2 Basic Topology

2.1 Finite, Countable, and Uncountable Sets
1. We write A ∼ B if sets A and B have the same cardinality. Let Jn be the set {1, 2, . . . , n}, and

J the set of all positive integers. For any set A, we say

(a) A is finite if A ∼ Jn for some n.

(b) A is infinite if A is not finite.

(c) A is countable if A ∼ J . (Note that here ‘countable’ really means ‘countably infinite’)

(d) A is uncountable if A is neither finite nor countable.

(e) A is at most countable if A is finite or countable.

2. A sequence is a function f defined on the set J of all positive integers. The sequence is denoted
by {xn} where xn = f(n). If A is a set and xn ∈ A for all n ∈ J , then {xn} is said to be a
sequence in A.

3. Every infinite subset of a countable set is countable.

4. Let {En}, n = 1, 2, 3, . . . , be a sequence of countable sets. Then the set S =
⋃∞

n=1En is
countable.

5. Let A be a countable set, and let Bn be the set of all n-tuples (a1, . . . , an), where each a ∈ A
and need not be distinct. Then Bn is countable.

6. Let A be the set of all sequences whose elements are the digits 0 and 1, then A is uncountable.

2.2 Metric Spaces
1. A set X is a metric space if a function d : X ×X → R is defined such that

(1) d(p, q) ≥ 0, equal only when p = q.

(2) d(p, q) = d(q, p)

(3) d(p, q) ≤ d(p, r) + d(r, q) for any r ∈ X .

The elements ofX are called points. Any function dwith these three properties is called ametric.
Note that every subset of a metric space is also a metric space.

2. A segment (a, b) is the set of all real numbers x such that a < x < b.

3. An interval [a, b] is the set of all real numbers x such that a ≤ x ≤ b.

4. If ai < bi for all i = 1, . . . , k, then the set of points x = (x1, . . . , xk), where ai ≤ xi ≤ bi, is
called a k-cell. Note that a 2-cell is a rectangle.
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5. If x ∈ Rk and r > 0, then the open ball B with center at x and radius r is the set of all y ∈ Rk

such that |y− x| < r. A closed ball is |y− x| ≤ r.

6. A subset E ⊂ Rk is convex if for any x,y ∈ E and 0 < λ < 1,

λx+ (1− λ)y ∈ E

Note that all balls and k-cells are convex.

7. Let (X, d) be a metric space.

(a) A neighborhood of a point p is a set Nr(p) consisting of all points q such that d(p, q) < r.

(b) A point p is a limit point if every neighborhood of p contains a point q 6= p such that
q ∈ E.

(c) If p ∈ E and p is not a limit point of E, then p is an isolated point.

(d) E is closed if every limit point of E is a point of E.

(e) A point p is an interior point of E if there is a neighborhood N of p such that N ⊂ E.

(f) E is open if every point of E is an interior point.

(g) E is perfect if every limit point of E is a point of E (closed) and every point of E is a limit
point of E (no isolated point).

(h) E is bounded if there is a real numberM and a point q ∈ X such that d(p, q) < M for all
p ∈ E.

(i) E is dense in X if every point of X is a limit point of E, or a point of E, or both.

8. Every neighborhood is an open set.

9. If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of
E.

10. A finite point set has no limit points.

11. Let {Eα} be a (finite or infinite) collection of sets Eα. Then, where c denotes complement,(⋃
α

Eα

)c

=
⋂
α

(Ec
α)

12. A set F is closed if and only if F c is open.

13. (a) For any collection {Gα} of open sets,
⋃

αGα is open.

(b) For any collection {Fα} of closed sets,
⋂

α Fα is closed.

(c) For any finite collection G1, . . . , Gn of open sets,
⋂n

i=1Gi is open.

(d) For any finite collection F1, . . . , Fn of closed sets,
⋃n

i=1 Fi is closed.
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14. If X is a metric space, E ⊂ X , and X ′ denotes the set of limit points of E, then the closure of
E is the set E = E ∪ E ′.

15. If X is a metric space and E ⊂ X , then

(a) E is closed.

(b) E = E if and only if E is closed.

(c) E ⊂ F for every closed set F ⊂ X such that E ⊂ F .

16. Let E be a nonempty set of real numbers which is bounded above. Let y = supE. Then y ∈ E.
Hence y ∈ E if E is closed.

17. Suppose E ⊂ Y ⊂ X . Then E is open relative to Y if to each p ∈ E there is associated an r > 0
such that q ∈ E whenever d(p, q) < r and q ∈ Y .

18. Suppose Y ⊂ X . A subset E of Y is open relative to Y if and only if E = Y ∩G for some open
set G of X .

2.3 Compact Sets
1. Let E be a subset of a metric space X . Then an open cover of E is a collection {Gα} of open

sets of X such that E ⊂
⋃

α Gα.

2. A subsetK of a metric spaceX is said to be compact if every open cover ofK contains a finite
subcover. That is, if {Gα} is an open cover of K , then K ⊂ Gα1 ∪ · · · ∪Gαn for a finite n.

3. Suppose K ⊂ Y ⊂ X . Then K is compact relative to X if and only if K is compact relative to
Y .
Note that this means we can talk about a compact set without considering its embedding space.

4. Compact subsets of metric spaces are closed.
Note that the idea of proof is that for any open subset, construct a special open cover such that
this open cover does not contain any finite subcover.

5. Closed subsets of compact sets are compact.

6. If F is closed and K is compact, then F ∩K is compact.

7. If {Kα} is a collection of compact subsets of a metric spaceX such that the intersection of every
finite subcollection of {Kα} is nonempty, then

⋂
Kα is nonempty.

8. If {Kn} is a sequence of nonempty compact sets such that Kn ⊃ Kn+1, then
⋂∞

n=1 Kn is not
empty.

9. If E is an infinite subset of a compact set K , then E has a limit point in K .
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10. If {In} is a sequence of intervals in R, such that In ⊃ In+1, then
⋂∞

n=1 In is not empty.
Note that the idea of proof is to construct a set E consisting of all an (suppose In = [an, bn]),
then show that supE ∈ In for every n.

11. Let k be a positive integer. If {In} is a sequence of k-cells such that In ⊃ In+1, then
⋂∞

n=1 In is
not empty.
Note that this is a generalization of the last theorem.

12. Every k-cell is compact.
Note that the idea of proof is to assume a k-cell is not compact, subdivide the k-cell many times,
and consider the property of the sequence of divided k-cells.

13. For a set E in Rk, the following three statements are equivalent:

(a) E is closed and bounded.

(b) E is compact.

(c) Every infinite subset of E has a limit point in E.

14. Every bounded infinite subset of Rk has a limit point in Rk.

2.4 Perfect Sets
1. Let P be a nonempty perfect set in Rk, then P is uncountable.

2. Every interval [a, b] (a < b) is uncountable. In particular, the set of all real numbers is uncount-
able.

3. The Cantor set contains no segment, but it is perfect (no isolated points), and also uncountable.

2.5 Connected Sets
1. Two subsets A and B of a metric space X are separated if both A ∩B and A ∩B are empty.

2. A set E ⊂ X is connected if E is not a union of two nonempty separated sets.
Note that separated sets are disjoint, but disjoint sets need not be separated.

3. A subset E of the real line R is connected if and only if it has the following property: If x ∈ E,
y ∈ E, and x < z < y, then z ∈ E.
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3 Numerical Sequences and Series

3.1 Convergent Sequences
1. A sequence {pn} in a metric space X is said to converge if there is a point p ∈ X with the

following property: For every ε > 0, there is an integer N such that n ≥ N implies that
d(pn, p) < ε.
Note that if {pn} converges to p, we write pn → p or limn→∞ pn = p.

2. If {pn} does not converge, it is said to diverge.

3. The set of all points pn is the range of {pn}. The sequence {pn} is bounded if its range is bounded.
Note that the range of a sequence may be finite or infinite.

4. Let {pn} be a sequence in a metric space X .

(a) {pn} converges to p ∈ X if and only if every neighborhood of p contains pn for all but
finitely many n.

(b) If p ∈ X , p′ ∈ X , and if {pn} converges to p and to p′, then p′ = p.

(c) If {pn} converges, then {pn} is bounded.

(d) If E ⊂ X and if p is a limit point of E, then there is a sequence {pn} in E such that
p = limn→∞ pn.

Note that for (b) we use the triangle inequality for metric space. And for (d), consider points
such that d(pn, p) < 1/n.

5. Suppose {sn}, {tn} are complex sequences, and limn→∞ sn = s, limn→∞ tn = t. Then

(a) limn→∞(sn + tn) = s+ t

(b) limn→∞(csn) = csn, limn→∞(c+ sn) = c+ sn, for any number c.

(c) limn→∞(sntn) = st

(d) limn→∞(1/sn) = 1/s, provided sn 6= 0 for all n and s 6= 0.

6. (a) Suppose xn ∈ Rk (n = 1, 2, 3, . . . ) and

xn = (α1,n, . . . , αk,n)

Then {xn} converges to x = (α1, . . . , αk) if and only if

lim
n→∞

αj,n = αj

(b) Suppose {xn}, {yn} are sequences inRk, {βn} is a sequence of real numbers, and {xn} →
x, {yn} → y, {βn} → β. Then

lim
n→∞

(xn + yn) = x+ y lim
n→∞

(xn · yn) = x · y lim
n→∞

(βnxn) = βx

Xukun Lin 9



Mathematical Analysis

3.2 Subsequences
1. Given a sequence {pn} consider a sequence {nk} of positive integers, such that n1 < n2 < . . . .

Then the sequence {pni
} is called a subsequence of {pn}. If {pni

} converges, its limit is called a
subsequential limit of {pn}.

2. {pn} converges to p if and only if every subsequence of {pn} converges to p.

3. (a) If {pn} is a sequence in a compact metric space X , then some subsequence of {pn} con-
verges to a point of X .
Note that we use the fact that an infinite subset of a compact set has a limit point.

(b) Every bounded sequence in Rk contains a convergent subsequence.
Note that this is because a bounded subset is a subset of its closure, which is closed and
bounded, and hence compact in Rk.

4. The subsequential limits of a sequence {pn} in a metric space X form a closed subset of X .
Note that we need to use the fact that every element in the set is a limit of a subsequence, so an
arbitrarily close point can be found.

3.3 Cauchy Sequences
1. A sequence {pn} in a metric spaceX is a Cauchy sequence if for every ε > 0, there is an integer

N such that d(pn, pm) < ε if n ≥ N andm ≥ N .

2. Let E be a nonempty subset of a metric space X , and let S be the set of all real numbers of the
form d(p, q), with p ∈ E and q ∈ E. Then supS is called the diameter of E.

3. If {pn} is a sequence in X and EN is the set consisting of points pN , pN+1, . . . , then {pn} is a
Cauchy sequence if and only if

lim
N→∞

diam EN = 0

4. (a) If E is the closure of a set E in a metric space X , then diam E = diam E.
(b) If {Kn} is a sequence of compact sets in X such that Kn ⊃ Kn+1 and if

lim
n→∞

diam Kn = 0

Then
⋂∞

n=1Kn consists of exactly one point.
Note that if it contains more than one point, the diameter would not be 0.

5. (a) In any metric space X , every convergent sequence is a Cauchy sequence.
(b) IfX is a compact metric space and if {pn} is a Cauchy sequence inX , then {pn} converges

to some point in X .
(c) In Rk, every Cauchy sequence converges.

6. A metric space in which every Cauchy sequence converges is said to be complete.
Note that all compact metric spaces and all Euclidean spaces are complete.
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7. Every closed subset E of a complete metric space is complete.

8. A sequence {sn} of R is said to be

(a) monotonically increasing if sn ≤ sn+1 for all n,
(b) monotonically decreasing if sn ≥ sn+1 for all n.

9. Suppose {sn} is monotonic. Then {sn} converges if and only if it is bounded.
Note that we need to use the sup or inf of the range of {sn}.

3.4 Upper and Lower Limits
1. Let {sn} be a sequence of R with the following property: For every real M there is an integer

N such that n ≥ N implies sn ≥ M . We then write sn → +∞. Similarly, if for every real M
there is an integer N such that n ≥ N implies sn ≤ M , we write sn → −∞.

2. Let {sn} be a sequence ofR. LetE be the set of numbers x (in the extended real number system)
such that snk

→ x for some subsequence {snk
}. We write

s∗ = supE s∗ = infE

The numbers s∗, s∗ are called the upper and lower limits of {sn}; we use the notation

lim sup
n→∞

sn = s∗ lim inf
n→∞

sn = s∗

3. Let {sn} be a sequence of real numbers. Let E and s∗ have the same meaning as in the last
definition. Then s∗ has the following two properties:

(a) s∗ ∈ E

(b) If x > s∗, there is an integer N such that n ≥ N implies sn < x.

Moreover, s∗ is the only number with the properties (a) and (b). An analogous result is true for
s∗.

4. If sn ≤ tn for n ≥ N , where N is fixed, then

lim inf
n→∞

sn ≤ lim inf
n→∞

tn lim sup
n→∞

sn ≤ lim sup
n→∞

tn

3.5 Some Special Sequences
1. (a) If p > 0, then limn→∞(1/np) = 0.

(b) If p > 0, then limn→∞ n
√
p = 1.

(c) limn→∞
n
√
n = 1

(d) If p > 0 and α is real, then limn→∞[nα/(1 + p)n] = 0.
(e) If |x| < 1, then limn→∞ xn = 0.

Note that we use the binomial theorem for proof.
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3.6 Series
1. Given a sequence {an}, the expression

∑∞
n=1 an is called an infinite series, or just a series. With

{an}, we associate a sequence {sn}, where

sn =
n∑

k=1

ak

The numbers sn are called the partial sums of the series. If {sn} converges to s, we say that the
series converges, and write

∞∑
n=1

an = s

s is called the sum of the series. It is the limit of {sn} and is not obtained simply by addition.
Note that a series is an infinite sum, and is not a sequence itself. And in the following discussions
the series and sequences are complex.

2.
∑

an converges if and only if for every ε > 0 there is an integer N such that∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ ≤ ε

ifm ≥ n ≥ N .
Note that this follows from the definition of Cauchy sequence.

3. If
∑

an converges, then limn→∞ an = 0.
Note that this follows from the last theorem by takingm = n. The converse of the this theorem
is incorrect.

4. A series of non-negative real terms converges if and only if its partial sums form a bounded
sequence.
Note that this is because {sn} is monotonic.

5. (a) If |an| ≤ cn for n ≥ N0, where N0 is some fixed number, and if
∑

cn converges, then∑
an converges.

(b) If an ≥ dn ≥ 0 for n ≥ N0, and if
∑

dn diverges, then
∑

an diverges.

3.7 Series of Non-negative Terms
1. If 0 ≤ x < 1, then

∞∑
n=0

xn =
1

1− x

If x ≥ 1, the series diverges.
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2. Suppose a1 ≥ a2 ≥ a3 ≥ · · · ≥ 0. Then the series
∑∞

n=1 an converges if and only if the series
∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + . . .

converges.
Note the condition is that {an} is non-negative and monotonically decreasing.

3.
∑

(1/np) converges if p > 1 and diverges if p ≤ 1.
Note that we use the last theorem and the convergence of the geometrical series.

4. If p > 1, the series
∞∑
n=2

1

n(lnn)p

converges. If p ≤ 1, the series diverges.

3.8 The Number e
1. e =

∑∞
n=0

1
n!
.

Note that this is the definition of e. The following is a theorem.

2. limn→∞(1 + 1/n)n = e

3. e is irrational.
Note that the proof uses the property of e− sn, where sn is the partial sum.

3.9 The Root and Ratio Tests
1. (Root Test) Given

∑
an, put α = lim supn→∞

n
√
|an|. Then

(a) If α < 1,
∑

an converges.
(b) If α > 1,

∑
an diverges.

(c) If α = 1, the test gives no information.

2. (Ratio Test) The series
∑

an

(a) converges if lim supn→∞ |an+1/an| < 1.
(b) diverges if |an+1/an| ≥ 1 for all n ≥ n0, where n0 is some fixed integer.

Note that in both tests, we use the fact that if lim supn→∞ < 1, then there exists β with
lim supn→∞ < β < 1, and |an| < β for n ≥ N , where N is some fixed integer.

3. For any sequence {cn} of positive numbers,

lim inf
n→∞

cn+1

cn
≤ lim inf

n→∞
n
√
cn

lim sup
n→∞

n
√
cn ≤ lim sup

n→∞

cn+1

cn
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3.10 Power Series
1. Given a sequence {cn} of complex numbers, the series

∑∞
n=0 cnz

n is called a power series. The
numbers cn are called the coefficients of the series, and z is a complex number.

2. Given the power series
∑

cnz
n, put

α = lim sup
n→∞

n
√
|cn| R =

1

α

Then
∑

cnz
n converges if |z| < R, and diverges if |z| > R. R is called the radius of convergence

of
∑

cnz
n.

Note that this is a direct consequence of the root test.

3.11 Summation by Parts
1. Given two sequences {an}, {bn}, put An =

∑n
k=0 ak for n ≥ 0, and put A−1 = 0. Then, if

0 ≤ p ≤ q, we have

q∑
n=p

anbn =

q−1∑
n=p

An(bn − bn+1) + Aqbq − Ap−1bp

Note that an = An − An−1.

2. Suppose

(a) the partial sums An of
∑

an form a bounded sequence,

(b) b0 ≥ b1 ≥ b2 ≥ . . . ,

(c) limn→∞ bn = 0.

Then
∑

anbn converges.

3. Suppose

(a) |c1| ≥ |c2| ≥ |c3| ≥ . . . ,

(b) c2m−1 ≥ 0, c2m ≤ 0 (m = 1, 2, 3, . . . ),

(c) limn→∞ cn = 0.

Then
∑

cn converges.
Note that we use the last theorem, with an = (−1)n+1, bn = |cn|. Series for which (b) holds are
called alternating series.

4. Suppose the radius of convergence of
∑

cnz
n is 1, and suppose c0 ≥ c1 ≥ c2 ≥ . . . , limn→∞ cn =

0. Then
∑

cnz
n converges at every point on the circle |z| = 1, except possibly at z = 1.

Note that if the radius of convergence is not 1, then the convergence at |z| = 1 is known and
not interesting anymore.
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3.12 Absolute Convergence
1. The series

∑
an is said to converge absolutely if the series

∑
|an| converges. If

∑
an converges

but
∑

|an| diverges, we say that
∑

an converges non-absolutely.

2. If
∑

an converges absolutely, then
∑

an converges.
Note that the comparison test, the ratio test, and the root test are all for absolute convergence,
which then implies convergence.

3.13 Addition and Multiplication of Series
1. If

∑
an = A, and

∑
bn = B, then

∑
(an + bn) = A+B, and

∑
(can) = cA, for any fixed c.

2. Given
∑

an and
∑

bn, we put

cn =
n∑

k=0

akbn−k

and call
∑

cn the (Cauchy) product of the two given series.
Note that the motivation behind this definition is to collect the coefficients of the terms of same
power, when two power series are multiplied term by term.

3. Suppose

(a)
∑∞

n=0 an converges absolutely,

(b)
∑∞

n=0 an = A,

(c)
∑∞

n=0 bn = B,

(d) cn =
∑n

k=0 akbn−k.

Then
∞∑
n=0

cn = AB

That is, the product of two convergent series converges, and to the right value, if at least one of
the two series converges absolutely.

4. If the series
∑

an,
∑

bn,
∑

cn converges to A, B, C , and cn =
∑n

k=0 akbn−k, then C = AB.
Note that the proof requires continuity, which is not covered yet.

3.14 Rearrangements
1. Let {kn} be a bijective sequence from J to J , where J denotes the set of positive integers.

Putting
a′n = akn

then we say that
∑

a′n is a rearrangement of
∑

an.
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2. Let
∑

an be a series of real numbers which converges, but not absolutely. Suppose

−∞ ≤ α ≤ β ≤ +∞

Then there exists a rearrangement
∑

a′n with partial sums s′n such that

lim inf
n→∞

s′n = α lim sup
n→∞

s′n = β

Note that the proof is basically constructing one such rearrangement.

3. If
∑

an is a series of complex numbers which converges absolutely, then every rearrangement
of
∑

an converges, and they all converge to the same sum.
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4 Continuity

4.1 Limits of Functions
1. Let (X, dX) and (Y, dY ) be metric spaces. Suppose E ⊂ X , f maps E into Y , and p is a limit

point of E. We write f(x) → q as x → p, or

lim
x→p

f(x) = q

if there is a point q ∈ Y with the following property: for every ε > 0 there exists a δ > 0 such
that

dY (f(x), q) < ε

for all points x ∈ E for which
0 < dX(x, p) < δ

Note that p need not be a point of E, and even if p ∈ E, we may well have f(p) 6= limx→p f(x).

2. Let X , Y , E, f , and p be as in the last definition. Then

lim
x→p

f(x) = q

if and only if
lim
n→∞

f(pn) = q

for every sequence {pn} ∈ E such that

pn 6= p lim
n→∞

pn = p

3. If f has a limit at p, this limit is unique.
Note that this follows from the uniqueness of limits of sequences.

4. For two complex functions f and g defined on a metric spaceE. We define f +g, f −g, fg, and
f/g, with the understanding that the quotient is defined only at those points x ∈ E at which
g(x) 6= 0.

5. Suppose E ⊂ X , a metric space, p is a limit point of E, f and g are complex functions on E,
and

lim
x→p

f(x) = A lim
x→p

g(x) = B

Then

(a) limx→p(f + g)(x) = A+B

(b) limx→p(fg)(x) = AB

(c) limx→p(f/g)(x) = A/B, if B 6= 0

Note that properties of limits of functions follow from properties of limits of sequences.
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4.2 Continuous Functions
1. SupposeX and Y are metric spaces, E ⊂ X , p ∈ E, and f mapsE into Y . Then f is continuous

at p if for every ε > 0 there exists a δ > 0 such that

dY (f(x), f(p)) < ε

for all points x ∈ E for which dX(x, p) < δ. If f is continuous at every point of E, then f is
continuous on E.
Note that f has to be defined at p in order to be continuous at p. And if p is an isolated point of
E, then every f that is defined on E is continuous at p.

2. In the situation given in the last definition, assume further that p is not an isolated point of E
(so that p is a limit point of E). Then f is continuous at p if and only if limx→p f(x) = f(p).
Note that this follows directly from the two related definitions.

3. Suppose X , Y , Z are metric spaces, E ⊂ X , f maps E into Y , g maps the range of f , f(E),
into Z , and h is the mapping of E into Z defined by

h(x) = g (f(x)) = g ◦ f(x)

If f is continuous at a point p ∈ E and g is continuous at the point f(p), then h is continuous
at p.

4. A mapping f of a metric spaceX into a metric space Y is continuous onX if and only if f−1(V )
is open in X for every open set V in Y .

5. A mapping f of a metric spaceX into a metric space Y is continuous onX if and only if f−1(C)
is closed in X for every closed set C in Y .
Note that this follows from the last theorem.

6. Let f and g be complex continuous functions on a metric spaceX . Then f + g, fg, and f/g are
continuous on X .
Note that we assume g(x) 6= 0 for all x ∈ X , otherwise the last case is incorrect.

7. (a) Let f1, . . . , fk be real functions on a metric space X , and let f be the mapping of X into
Rk defined by

f(x) = (f1(x), . . . , fk(x))

Then f is continuous if and only if each of the functions f1, . . . , fk is continuous.

(b) If f and g are continuous mappings of X into Rk, then f+ g and f · g are continuous on
X .

Note that the proof follows from the last theorem and inequalities regarding vector and its
components.
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4.3 Continuity and Compactness
1. A mapping f of a set E into Rk is said to be bounded if there is a real number M such that

|f(x)| ≤ M for all x ∈ E.

2. Suppose f is a continuous mapping of a compact metric space X into a metric space Y . Then
f(X) is compact.

3. If f is a continuous mapping of a compact metric space X into Rk, then f(X) is closed and
bounded. So f is bounded.
Note that this follows from the last theorem and property of Rk.

4. Suppose f is a continuous real function on a compact metric space X , and

M = sup
x∈X

f(x) m = inf
x∈X

f(x)

Then there exists points p, q ∈ X such that f(p) = M and f(q) = m.
Note that this follows from the last theorem.

5. Suppose f is a continuous bijection from a compact metric space X to a metric space Y . Then
the inverse mapping f−1 defined on Y by

f−1 (f(x)) = x

is a continuous mapping of Y onto X .

6. Let f be a mapping of a metric space X into a metric space Y . We say that f is uniformly
continuous on X if for every ε > 0 there exists δ > 0 such that

dY (f(p), f(q)) < ε

for all p, q in X for which dX(p, q) < δ.
Note that in this definition p is not a chosen point, but an arbitrary point. So uniform continuity
is stronger than continuity, and every uniformly continuous function is continuous.

7. Let f be a continuous mapping of a compact metric space X into a metric space Y . Then f is
uniformly continuous on X .

8. Let E be a non-compact set in R. Then

(a) there exists a continuous function on E which is not bounded.

(b) there exists a continuous and bounded function on E which has no maximum.

If, in addition, E is bounded, then

(c) there exists a continuous function on E which is not uniformly continuous.
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4.4 Continuity and Connectedness
1. If f is a continuous mapping of a metric space X into a metric space Y , and if E is connected,

then f(E) is connected.

2. Let f be a continuous real function on the interval [a, b]. If f(a) < f(b), and if c is a number
such that f(a) < c < f(b), then there exists a point x ∈ (a, b) such that f(x) = c.
Note that this follows from the last theorem.

4.5 Discontinuities
1. Let f be defined on E and let x ∈ E. If f is not continuous at x, we say that f is discontinuous

at x.

2. Let f be defined on (a, b). Consider any point x such that a ≤ x < b. We write

f(x+) = q

if f(tn) → q as n → ∞, for all sequences {tn} in (x, b) such that tn → x. To obtain the
definition of f(x−), for a < x ≤ b, we restrict ourselves to sequences {tn} in (a, x).
Note that for any x ∈ (a, b), limt→x f(t) exists if and only if

f(x+) = f(x−) = lim
t→x

f(t)

3. Let f be defined on (a, b). If f is discontinuous at a point x, and if f(x+) and f(x−) exist, then
f is said to have a discontinuity of the first kind, or a simple discontinuity, at x. Otherwise the
discontinuity is said to be of the second kind.

4.6 Monotonic Functions
1. Let f be real on (a, b). Then f is said to be monotonically increasing on (a, b) if a < x < y < b

implies f(x) ≤ f(y). If f(x) ≥ f(y), we obtain the definition of a monotonically decreasing
function.

2. Let f be monotonically increasing on (a, b). Then f(x+) and f(x−) exist at every point of x of
(a, b). More precisely,

sup
a<t<x

f(t) ≤ f(x−) ≤ f(x) ≤ f(x+) ≤ inf
x<t<b

f(t)

Furthermore, if a < x < y < b, then

f(x+) ≤ f(y−)

And analogous results hold for monotonically decreasing functions.

3. Monotonic functions have no discontinuities of the second kind.
Note that this follows from the last theorem.
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4. Let f be monotonic on (a, b). Then the set of points of (a, b) at which f is discontinuous is at
most countable.
Note that the idea is to construct a one-to-one correspondence between the set of discontinuous
points and a subset of rational numbers.

4.7 Infinite Limits and Limits at Infinity
1. For any real c, the set of real numbers x such that x > c is called a neighborhood of +∞ and is

written (c,+∞). Similarly, the set (−∞, c) is a neighborhood of −∞.

2. Let f be a real function defined on E ⊂ R. We say that

f(t) → A as t → x

where A and x are in the extended real number system, if for every neighborhood U of A there
is a neighborhood V of x such that V ∩E is not empty, and such that f(t) ∈ U for all t ∈ V ∩E,
t 6= x.
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5 Differentiation

5.1 The Derivative of a Real Function
1. Let f be defined (and real-valued) on [a, b]. For any x ∈ [a, b] form the quotient

φ(t) =
f(t)− f(x)

t− x
(a < t < b, t 6= x)

and define
f ′(x) = lim

t→x
φ(t)

provided that this limit exists. f ′ is called the derivative of f . If f ′ is defined at a point x, we
say that f is differentiable at x.

2. Let f be defined on [a, b]. If f is differentiable at a point x ∈ [a, b], then f is continuous at x.

3. Suppose f and g are defined on [a, b] and are differentiable at a point x ∈ [a, b]. Then f + g, fg,
and f/g are differentiable at x, and

(a) (f + g)′(x) = f ′(x) + g′(x)

(b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x)

(c)
(
f

g

)′

(x) =
f ′(x)g(x)− f(x)g′(x)

g2(x)

In (c) we assume that g(x) 6= 0.

4. Suppose f is continuous on [a, b], f ′(x) exists at some point x ∈ [a, b], g is defined on an interval
I which contains the range of f , and g is differentiable at the point f(x). If

h(t) = g (f(t)) (a ≤ t ≤ b)

then h is differentiable at x, and

h′(x) = g′ (f(x)) f ′(x)

5.2 Mean Value Theorems
1. Let f be defined on a metric space X . We say that f has a local maximum at a point p ∈ X

if there exists δ > 0 such that f(q) ≤ f(p) for all q ∈ X with d(p, q) < δ. Local minima are
defined likewise.

2. Let f be defined on [a, b]. If f has a local maximum at a point x ∈ (a, b), and if f ′(x) exists,
then f ′(x) = 0. Similar for local minima.
Note that the idea is to show f ′(x) ≥ 0 on one side, and f ′(x) ≤ 0 on the other.
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3. If f and g are continuous real functions on [a, b] which are differentiable in (a, b), then there is
a point x ∈ (a, b) at which

[f(b)− f(a)] g′(x) = [g(b)− g(a)] f ′(x)

Note that differentiability is not required at the endpoints.

4. If f is a real continuous function on [a, b] which is differentiable in (a, b), then there is a point
x ∈ (a, b) at which

f(b)− f(a) = (b− a)f ′(x)

Note that this follows from the last theorem by taking g(x) = x.

5. Suppose f is differentiable in (a, b).

(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f is monotonically increasing.

(b) If f ′(x) = 0 for all x ∈ (a, b), then f is constant.

(c) If f ′(x) ≤ 0 for all x ∈ (a, b), then f is monotonically decreasing.

5.3 The Continuity of Derivatives
1. Suppose f is a real differentiable function on [a, b] and suppose f ′(a) < λ < f ′(b). Then there

is a point x ∈ (a, b) such that f ′(x) = λ.

2. If f is differentiable on [a, b], then f ′ cannot have any simple discontinuities on [a, b].

5.4 L’Hôpital’s Rule
1. Suppose f and g are real and differentiable in (a, b), and g′(x) 6= 0 for all x ∈ (a, b), where

−∞ < a < b < +∞. Suppose
f ′(x)

g′(x)
→ A as x → a

If
f(x) → 0 and g(x) → 0 as x → a

or if
g(x) → +∞ as x → a

then
f(x)

g(x)
→ A as x → a

Note that A is in the extended real number system, and it also works if x → b or g(x) → −∞.
The idea of proof is to show that for any p > A, there exists c1 such that a < x < c1 implies
f(x)/g(x) < p; and for any q < A, there exists c2 such that a < x < c2 implies f(x)/g(x) > q.
So f(x)/g(x) → A.
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5.5 Derivatives of Higher Order
1. f (n) is called the nth derivative of f .

5.6 Taylor’s Theorem
1. Suppose f is a real function on [a, b], n is a positive integer, f (n−1) is continuous on [a, b], f (n)(t)

exists for every t ∈ (a, b). Let α, β be distinct points of [a, b], and define

P (t) =
n−1∑
k=0

f (k)(α)

k!
(t− α)k

Then there exists a point x between α and β such that

f(β) = P (β) +
f (n)(x)

n!
(β − α)n

Note that for n = 1 this is the mean value theorem. The proof depends on the mean value
theorem as well.

5.7 Differentiation of Vector-valued Functions
1. f′(x) is the point in Rk for which

lim
t→x

∣∣∣∣f(t)− f(x)
t− x

− f′(x)
∣∣∣∣ = 0

If f1, . . . , fk are the components of f, then

f′ = (f ′
1, . . . , f

′
k)

Note that the mean value theorem and the L’Hôpital’s rule are no longer valid (so we cannot
use them for complex-valued functions).

2. Suppose f is a continuous mapping of [a, b] into Rk and f is differentiable in (a, b). Then there
exists x ∈ (a, b) such that

|f(b)− f(a)| ≤ (b− a) |f′(x)|

Note that the proof uses the Schwarz inequality.
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6 The Riemann-Stieltjes Integral

6.1 Definition and Existence of the Integral
1. Let [a, b] be a given interval. By a partition P of [a, b]wemean a finite set of points x0, x1, . . . , xn,

where
a ≤ x0 ≤ x1 ≤ · · · ≤ xn = b

We write
∆xi = xi − xi−1 (i = 1, 2, . . . , n)

Now suppose f is a bounded real function defined on [a, b]. Corresponding to each partition P
of [a, b] we put

Mi = sup f(x) mi = inf f(x) (xi−1 ≤ x ≤ xi)

U(P, f) =
n∑

i=1

Mi∆xi L(P, f) =
n∑

i=1

mi∆xi

and finally ∫ b

a

fdx = infU(P, f)

∫ b

a

fdx = supL(P, f)

where the inf and sup are taken over all partitions P of [a, b]. The two LHS are called the upper
and lower Riemann integrals of f over [a, b].
If the upper and lower integrals are equal, we say that f is Riemann-integrable on [a, b], we write
f ∈ R, and we denote the common value of the two by∫ b

a

fdx or
∫ b

a

f(x)dx

This is the Riemann integral of f over [a, b]. Since f is bounded, there exist two numbers, m
andM , such that

m ≤ f(x) ≤ M

Hence, for every P ,
m(b− a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a)

So that the numbers L(P, f) and U(P, f) form a bounded set. This shows that the upper and
lower integrals are defined for every bounded function f .

2. Let α be a monotonically increasing function on [a, b]. Corresponding to each partition P of
[a, b], we write

∆αi = α(xi)− α(xi−1)

It is clear that ∆αi ≥ 0. For any real function f which is bounded on [a, b], we put

U(P, f, α) =
n∑

i=1

Mi∆αi L(P, f, α) =
n∑

i=1

mi∆αi
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whereMi, mi have the same meaning as in the last definition, and we define∫ b

a

fdα = infU(P, f, α)

∫ b

a

fdα = supL(P, f, α)

If the two LHS are equal, we denote their common value by∫ b

a

fdα or
∫ b

a

f(x)dα(x)

This is the Riemann-Stieltjes integral of f with respect to α, over [a, b]. If the integral exists, we
write f ∈ R(α).

3. We say that the partition P ∗ is a refinement of P if P ∗ ⊃ P . Given two partitions P1 and P2,
we say that P ∗ is their common refinement if P ∗ = P1 ∪ P2.

4. If P ∗ is a refinement of P , then

L(P, f, α) ≤ L(P ∗, f, α)

and
U(P, f, α) ≥ U(P ∗, f, α)

Note that to prove, consider the simple case where P ∗ has only one more point.

5.
∫ b

a

fdα ≤
∫ b

a

fdα

6. f ∈ R(α) on [a, b] if and only if for every ε > 0 there exists a partition P such that

U(P, f, α)− L(P, f, α) < ε

7. Let E denote the equation
U(P, f, α)− L(P, f, α) < ε

(a) If E holds for some P and some ε, then E holds (with the same ε) for every refinement of
P .

(b) If E holds for P = {x0, . . . , xn} and if si, ti are arbitrary points in [xi−1, xi], then

n∑
i=1

|f(si)− f(ti)|∆αi < ε

(c) If f ∈ R(α) and the hypotheses of (b) hold, then∣∣∣∣∣
n∑

i=1

f(ti)∆αi −
∫ b

a

fdα

∣∣∣∣∣ < ε
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8. If f is continuous on [a, b], then f ∈ R(α) on [a, b].
Note that we use the property of f being uniformly continuous.

9. If f is monotonic on [a, b], and if α is continuous on [a, b], then f ∈ R(α). (We still assume that
α is monotonic.)

10. Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b], and α
is continuous at every point at which f is discontinuous. Then f ∈ R(α).
Note that we divide the sum in two parts: one with segments containing all discontinuous
points, and the other one containing all points left in [a, b].

11. Suppose f ∈ R(α) on [a, b], m ≤ f ≤ M , φ is continuous on [m,M ], and h(x) = φ (f(x)) on
[a, b]. Then h ∈ R(α) on [a, b].

6.2 Properties of the Integral
1. (a) If f1, f2, f ∈ R(α) on [a, b], then

f1 + f2 ∈ R(α) cf ∈ R(α)

for every constant c, and∫ b

a

(f1 + f2)dα =

∫ b

a

f1dα +

∫ b

a

f2dα

∫ b

a

cfdα = c

∫ b

a

fdα

(b) If f1(x) ≤ f2(x) on [a, b], then ∫ b

a

f1dα ≤
∫ b

a

f2dα

(c) If f ∈ R(α) on [a, b] and if a < c < b, then f ∈ R(α) on [a, c] and on [c, b], and∫ c

a

fdα +

∫ b

c

fdα =

∫ b

a

fdα

(d) If f ∈ R(α) on [a, b] and if |f(x)| ≤ M on [a, b], then∣∣∣∣∫ b

a

fdα

∣∣∣∣ ≤ M [α(b)− α(a)]

(e) If f ∈ R(α1) and f ∈ R(α2), then f ∈ R(α1 + α2) and∫ b

a

fd(α1 + α2) =

∫ b

a

fdα1 +

∫ b

a

fdα2

If f ∈ R(α) and c is a positive constant, then f ∈ R(cα) and∫ b

a

fd(cα) = c

∫ b

a

fdα
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2. If f ∈ R(α) and g ∈ R(α) on [a, b], then

(a) fg ∈ R(α)

(b) |f | ∈ R(α) and
∣∣∣∣∫ b

a

fdα

∣∣∣∣ ≤ ∫ b

a

|f |dα

3. The unit step function I is defined by

I(x) =

{
0 (x ≤ 0)

1 (x > 0)

4. If a < s < b, f is bounded on [a, b], f is continuous at s, and α(x) = I(x− s), then∫ b

a

fdα = f(s)

5. Suppose cn ≥ 0 for n = 1, 2, 3, . . . ,
∑

cn converges, {sn} is a sequence of distinct points in
(a, b), and

α(x) =
∞∑
n=1

cnI(x− sn)

Let f be continuous on [a, b]. Then ∫ b

a

fdα =
∞∑
n=1

cnf(sn)

6. Assume α increases monotonically and α′ ∈ R on [a, b]. Let f be a bounded real function on
[a, b]. Then f ∈ R(α) if and only if fα′ ∈ R. In that case∫ b

a

fdα =

∫ b

a

f(x)α′(x)dx

7. Suppose ϕ is a strictly increasing continuous function that maps an interval [A,B] onto [a, b].
Suppose α is monotonically increasing on [a, b] and f ∈ R(α) on [a, b]. Define β and g on
[A,B] given by

β(y) = α (ϕ(y)) g(y) = f (ϕ(y))

Then g ∈ R(β) and ∫ B

A

gdβ =

∫ b

a

fdα
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6.3 Integration and Differentiation
1. Let f ∈ R on [a, b]. For a ≤ x ≤ b, put

F (x) =

∫ x

a

f(t)dt

Then F is continuous on [a, b]. Furthermore, if f is continuous at a point x0 of [a, b], then F is
differentiable at x0, and

F ′(x0) = f(x0)

2. If f ∈ R on [a, b] and if there is a differentiable function F on [a, b] such that F ′ = f , then∫ b

a

f(x)dx = F (b)− F (a)

Note that again we use the mean value theorem to prove.

3. Suppose F and G are differentiable functions on [a, b], F ′ = f ∈ R, and G′ = g ∈ R. Then∫ b

a

F (x)g(x)dx = F (b)G(b)− F (a)G(a)−
∫ b

a

f(x)G(x)dx

Note that for proof we put H(x) = F (x)G(x) and apply the last theorem.

6.4 Integration of Vector-valued Functions
1. Let f1, . . . , fk be real functions on [a, b], and let f = (f1, . . . , fk) be the corresponding mapping

of [a, b] into Rk. If α increases monotonically on [a, b], to say that f ∈ R(α) means that fj ∈
R(α) for j = 1, . . . , k. If this is the case, we define∫ b

a

fdα =

(∫ b

a

f1dα, . . . ,

∫ b

a

fkdα

)
In other words,

∫
fdα is the point in Rk whose jth coordinate is

∫
fjdα.

2. If f and F map [a, b] into Rk, if f ∈ R on [a, b], and if F′ = f, then∫ b

a

f(t)dt = F(b)− F(a)

3. If f maps [a, b] into Rk and if f ∈ R(α) for some monotonically increasing function α on [a, b],
then |f| ∈ R(α), and ∣∣∣∣∫ b

a

fdα
∣∣∣∣ ≤ ∫ b

a

|f|dα
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6.5 Rectifiable Curves
1. A continuous mapping γ of an interval [a, b] into Rk is called a curve in Rk. To emphasize the

parameter interval [a, b], we may also say that γ is a curve on [a, b].

• If γ is one-to-one, γ is called an arc.

• If γ(a) = γ(b), γ is said to be a closed curve.

We associate to each partitionP = {x0, . . . , xn} of [a, b] and to each curve γ on [a, b] the number

Λ(P, γ) =
n∑

i=1

|γ(xi)− γ(xi−1)|

The length of γ is defined to be
Λ(γ) = supΛ(P, γ)

where sup is taken over all partitions of [a, b]. If Λ(γ) < ∞, we say that γ is rectifiable.

2. If γ′ is continuous on [a, b], then γ is rectifiable, and

Λ(γ) =

∫ b

a

|γ′(t)| dt
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7 Sequences and Series of Functions

7.1 Discussion of Main Problem
1. Suppose {fn}, n = 1, 2, 3, . . . , is a sequence of functions defined on a set E, and suppose that

the sequence of numbers {fn(x)} converges for every x ∈ E. We can define a function f by

f(x) = lim
n→∞

fn(x)

Under these circumstances we say that {fn} converges on E and that f is the limit, or the limit
function, of {fn}. Sometimes we shall use a more descriptive terminology and shall say that
“{fn} converges to f pointwise on E”. Similarly, if

∑
fn(x) converges for every x ∈ E, and if

we define

f(x) =
∞∑
n=1

fn(x)

the function f is called the sum of the series
∑

fn.
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