
C Programming Language

Xukun Lin

The reference is the book C Primer Plus.

A rather simple C code looks like this

#include <stdio.h> // prepocessor part

int main(void) {

 printf("Hello world!\n"); /* print out something */

 return 0; // also a comment

}

Data Types

Data types include int long short unsigned char float double signed void _Bool
_Complex _Imaginary . The basic types are int float and other types are more for
variations. int and long int (or simply long) are 32bits, short is 16bits, and long long
int is 64bits.

We can initialize and define a variable at the same time, for example,

long int x = 5;

Note that a floating point number is not that accurate. In the following case, the result could be
0 .

float x, y;

x = 1e20;

y = 1e20 + 1;

printf("%f", x-y);

Strings and I/O

To create a string of characters, we can use an array of characters,

char mystring[40]

so 40 bytes are assigned to mystring to store a string. For every string, there is always a null
character '\0' to indicate the end of the string, so in this case only 39 bytes are available.

There are two ways to find the length of a string, sizeof() and strlen() . The first returns
the number of memory cells used by the string, while the second returns the number of
characters (including white space, null character) of the string.

In the prepocessor part, we can define a constant, for example , by

#define PI 3.1415926536 // Capitalized constant name is a tradition

It can also be used to define a constant character of string. And we can also do the following
instead

const float SQRT2 = 1.4142136; // more flexible than using #define

The printf() function has many conversion specifiers. Some of them are %c (single
character), %d (signed decimal), %e (float in e notation), %f (standard float), %s (string), etc.

There are also modifiers, for example, %10d prints a integer that is 10 characters wide, even
though the int itself is smaller. Other include %10.2f (width=10, decimal places=2), %-10d ,
and so on.

There are 5 flags we can use in modifiers: - (left-justified), + (show its sign), (with a leading
space), 0 (fill with 0s), and # .

The return value of printf() is the number of characters it printed.

You can also concatenate two strings in printf() by separating two strings with a whitespace,

printf("This is" " a long string.");

To use scanf() , we can write

π

scanf("%d %f", &integer, &floating); // notice the whitespace and &

scanf("%s", string); // no & only for strings (char arrays)

The modifiers for scanf() are a little different.

The return value of scanf() is the number of items it successfully read.

Operators, Expressions, and Statements

The common operators in C include + - * / . Note that / works differently for int and
float .

Other operators are % (modulus), sizeof , ++ -- (these two have two types, either before or
after an operand, the results are different).

A while loop can look like this

while (++index < 10) {

 printf("%d", index);

} // a while loop

A cast operator has the form (type) . For example,

int m;

m = (int) 1.2 + (int) 1.3

is valid and shows type conversion explicitly.

C Control Statements: Loops

All values except 0 are considered to be true .

A for loop in C looks like

for (m = 1, n = 12; m < 10; m++) {}

The first expression uses the comma operator. It may be used for multiple times.

Here are more operators: += -= *= /= %= . var += 2 is equivalent to var = var + 2 , and
so on.

Different than while and for loops, which are entry-condition loops, the do while loop is
exit-condition. It looks like

do {} while ();

Note the semicolon in the end.

An array is a series of values of the same type. The index of an array in C starts at 0 .

C Control Statements: Branching and Jumps

The functions getchar() and putchar() are the char type equivalence of scanf() and
printf() .

The ctype.h header file contains useful functions for characters, including isalpha() ,
isblank() , and so on.

When using an if () {} else if () {} else {} loop, the {} may be ignored if only one
statement is in each part. Also note that the else pairs with the latest if , unless your use
{} . Unlike Python, indentation in C is useless.

The following loop

if (y < 0)

 x = -y;

else

 x = y;

is equivalent to the conditional expression using the ?: conditional operator,

x = (y < 0) ? -y : y;

Logical operators are && || ! .

The continue; statement skips the rest of an iteration and starts the next iteration. So it
cannot be used in if statements.

The break; statement breaks the loop and proceeds to the next stage of the program.

A switch statement looks like this,

switch () {

 case c1:

 // something

 break;

 case c2:

 // something

 break;

 default:

 // something

}

Note that break is essential. Without it all statements in switch that are after the chosen case
are executed. continue does not work with switch .

Note that each label (c1 c2 , etc.) must be an int type (including char). float does not
work, but if you have to, use if else instead.

We can also assign multiple labels to one case,

switch () {

 case c1: // this will jump to the next case since no break is present

 case C1:

 // something

 break;

 // ...

}

C also has a goto statement. We can use it like

if (x > 0)

 goto a;

a: x *= 12;

But for modern programming we should avoid using goto .

Character I/O and Input Validation

A buffer is an area of temporary storage.

A stream is an idealized flow of data to which the input or output is mapped.

When reaching the end of a file, the getchar() returns EOF (end of file), which in most cases
is defined to be -1 by stdio.h . For keyboard input, we can use Ctrl+D as EOF .

The default input is keyboard, but we can redirect to other sources, such as a text file named
infile . Suppose we have an executable file named file compiled from C. In Terminal,

instead of typing ./file , we can type

./file < infile

If we want to send the output to a file named outfile , we can type

./file > outfile

Functions

The arguments of a function and variables defined in the function are local. You can use the
same names in other parts of the program and there will be no conflicts.

Remember that a function should be defined outside and after main() .

In a function prototyping, we don't have to include arguments. That is, the following is perfectly
fine:

void myfun(int, int, float);

The return will cause the function to terminate and return control to the calling function.

Use the math.h header file for more mathematical functions.

We can write a function to do recursive work. The following function converts a base10 integer
to base2:

void to_binary(unsigned long n) {

 int r;

 r = n % 2;

 if (n >= 2)

 to_binary(n / 2);

 putchar(r == 0 ? '0' : '1');

 return;

}

A C header file (.h) is simply a .txt file that contains declarations, constants, and so on.

The operator & gives the memory address of a variable. For example, we can write

printf("%p", &var);

to print the address, which in most computers is displayed in hexadecimal form.

A pointer is a variable that has a memory address as its value. But note that it is different from
the int type, and should be regarded as a new type.

To declare a pointer, we can write

int * ptr; // ptr is a pointer pointing to an int

where int may be replaced by other types. To define the pointer we write,

ptr = &var; // ptr is a pointer pointing to the memory address of var

To retrieve the value stored at ptr , we can use the * operator,

value = *ptr; // get the value at ptr

Pointers are extremely helpful if we want to alter variables in a calling function.

Arrays and Pointers

We can initialize an array by

int myarray[3] = {1, 2, 3}; // initialize an int array

or simply

int myarray[] = {1, 2, 3}; // no need to deal with length

If C99 is supported by the compiler, we can also do the following

int myarray[4] = {12, [1] = 13, [2] = 14, 15}; // assign values to different
places

To assign values to an array, we have to do it one by one.

To declare a multi-dimensional array, we can write

float myarray[5][7]; // An array of 5 arrays of 7 floats

the declaration makes perfect sense if we read from left to right.

To initialize a multi-dimensional array, we use

int myarray[2][3] = {

 {1, 2, 3},

 {4, 5, 6}

}

or equivalently,

int myarray[2][3] = {1, 2, 3, 4, 5, 6};

The two methods fill each entry differently, so trouble can arise if the initialization does not fill all
entries.

The generalization to higher-dimensional array is trivial,

int myarray[2][3][4][5]; // declare a 4-dimensional array

An array name is the memory address of the first element of the array. That is, the following is
true,

myarray == &myarray[0];

In C, arrays and pointers are closely related and notations can be converted both ways.

When you add 1 to a pointer, the pointer actually adds one storage unit. If the pointer points
to a double , which is 64bits or 8bytes, adding 1 causes the pointer to point to a new address
that is 8 larger (in most cases the address is in unit of bytes). So the following is true,

myarray[3] == *(myarray + 3);

Operations on pointers include + - integers, subtracting one pointer from another, and
comparing two pointers.

Note that if calling a function that takes an array (which is a pointer) as argument, the function
may change the original values of the array, and we need to be careful. To avoid errors, we can
write

int sum(const int myarray[], int n) {} // add const to avoid accidental
changing

To declare a pointer to an array, which is helpful for dealing with higher-dimensional arrays, we
can use

int (* ptr)[2]; // a pointer to a 2-int array

For a function, we can write

int myfun(int (*ptr)[2]) {} // function definition

or equivalently,

int myfun(int ptr[][2]) {} // equivalent function definition

A compound literal can be used to represent an array. For example, we can write

int * ptr; // declare a pointer

ptr = (int [2]) {1, 2}; // initialize the pointer

Character Strings and String Functions

A string is a character array with the null character (\0) at the end.

The function puts() displays a string and automatically adds a new line.

Unlike a pointer, if you use array, the array name is constant. For example

char mystring[] = "hello"; // mystring is automatically a constant

char * ptr = "hi"; // nothing is constant

Note that in the first case the name mystring is not a variable, but each element, such as
mystring[2] , can still be altered. For the second case, since the pointer points to a string

literal, it would be highly recommended to use

const * ptr = "hi"; // add const when pointing to a constant array

The functions fgets() and fputs() can be used to read input. For example,

char word[12];

fgets(word, 12, stdin); // read a string of length 11 from keyboard (stdin) to
word

fputs(word, stdout); // display word to screen (stdout)

There are several useful string functions. They are in string.h .

strlen() finds the length of a string.

strcat() takes two string arguments, a copy of the second string is concatenated to the first
one to create the new first string, and the second string is not altered. Not that the first string
needs to have enough length for the new string, otherwise strcat() can cause problems.

strncat() takes a third argument to know the max number of characters to add.

strcmp() compares two strings. Two strings can have different memory sizes, but strcmp()
only cares about characters before the null character. The return value is 0 if two strings are

same and nonzero otherwise.

strncmp() compares strings up to a max length, so it takes a third argument.

strcpy() and strncpy() copy strings. For example,

strcpy(myarray, ptr); // copy string pointed by ptr to array pointed by
myarray

sprintf() is just like printf() , except that it has an extra first argument which is a pointer to
a string (so it is used to write to a string instead of a display).

sprintf(mystring, "%d", 125); // write 125 to the string mystring

The stdlib.h file contains conversion functions.

atoi() is from a string to an int . For example, "210" to 210 . There are also atof() (to
double) and atol (to long). Others include strtol() , strtoul() , strtod() , etc.

char mystring = "550 this";

char * ptr;

strtol(mystring, &ptr, 10); // base 10, ptr would point to anything after 550

Note that we only provide the memory address of the pointer ptr , and the value that the
pointer points to, which would be stored in the address of the pointer, is set by strtol() .

Storage Classes, Linkage, and Memory Management

Scope describes the regions of a program that can access an identifier (a variable name).

Variables defined inside a block ({}) has block scope, which means they are only visible
inside the block. Note that the () part of a function or a loop is also considered to be part
of the block.

Function scope only applies to labels used with goto statements. As long as a label is
defined inside a function (anywhere, does not matter in block or not), it is visible to the
whole function.

Function prototype scope applies to function prototypes. The variables are only visible
within the prototype declaration.

A variable that is defined outside of any function (including main) has file scope. It is
visible to the whole file. File scope variables are also called global variables.

A file scope variable is actually visible to the whole translation unit. When a header file, for
example, is included in a source code file, the content inside the .h file is copied to the .c file
by the compiler, and the new single file is called a translation unit.

Variables with the first three scopes have no linkage, which means they are private to the
block, function, or function prototype. Variables with file scope have either internal or external
linkage. A variable with internal linkage can be accessed within a translation unit, and with
external linkage it can be accessed anywhere in a multi-file program. The word static is used
for internal linkage.

int x = 5; // file scope, external linkage
static int y = 6; // file scope, internal linkage

There are 4 types of storage duration,

An object that has static storage duration exists throughout program execution. All file
scope variables have static storage duration, and the previous static refers to the linkage
type, not the duration type.

An object that has thread storage duration exists inside a thread.

Variables with block scope normally have automatic storage duration. They exist inside
their blocks and the memory is freed after the block exits.

There is also allocated storage duration.

We can also add static to a block scope variable to let it have static storage duration. This
kind of variable only initializes once, no matter how many times the function that contains it is
called.

There are 5 storage classes,

We use auto for automatic class (default for variables inside blocks). But it is recommended
not to use it unless necessary. Note that if two variables, one in the outer block and one in the
inner block, have the same name, then the inner variable hides the outer variable. But when the
inner block exits, the outer variable comes back to scope.

We use register for register class. This kind of variable is stored in CPU registers, and hence
the address operator & cannot be used.

We use extern for static with external linkage class. Note that if an external variable is defined
in one .c file, then using extern is mandatory to use that variable in the current .c file. Note
that a variable with block scope hides the variable with file scope that has the same name.

int x = 50; // external variable

int main(void) {

 extern int x; // if only without extern, x here would be a new local
variable

 // something

}

In the code above, the first is called a defining declaration, and the second is called a
referencing declaration.

When defining file scope variables, we can only use constants. That is, the following is invalid,

int x = 2; // file scope

int y = 2 * x; // file scope, cannot use x, which is a variable

To declare a static storage variable with internal linkage, we use

static int x = 1; // file scope, static storage, internal linkage

Function prototypes are internal by default. To make it external so that other source files can
use the function, we use extern .

double myfun(double); // external by default, a good practice is to add
extern

static int mynextfun(int); // internal function

The function malloc() can be used to allocate memories in bytes. The return value of the
function is a void typed pointer pointing to the address of the first byte of the memory block, but
we can use type conversion to convert it to other types.

double * ptd;

ptd = (double *) malloc(sizeof(double)); // convert void pointer to double
pointer

This method can be used to create arrays whose length is defined during running. (remember
previously an array length must be a constant, but here it can be a variable).

The free() function is used to free the memory block that has been allocated. It only works
with memory allocated by malloc() .

free(ptd); // free the memory block allocated in the last code block

Another function for memory allocation is calloc() , whose first argument is the number of
cells to allocate, and the second argument is the length of each cell in bytes. The free function
can also be used.

long * ptd;

ptd = (long *) calloc(10, sizeof(long)); // an alternative for malloc

There are 3 type qualifiers, const , volatile , and restrict .

const means the program cannot change the value of a variable.

volative means that the variable can be altered by agencies other than the program.

restrict is applied only to pointers, and it indicates that a pointer is the sole initial means of
accessing a data object.

File I/O

A file is a named section of storage.

In C, there are 2 ways to see a file, binary mode and text mode.

exit() causes a program to terminate. The argument of it indicates how the program
terminates.

exit(EXIT_FAILURE); // program terminates abnormally (EXIT_FAILURE is in
stdlib.h)

fopen() opens a file. To use it, we can type

fopen("name", "r"); // open the file with name "name" and read it only

The first argument is the file name. The second argument is a string identifying the mode,
including "r" (reading), "w" (writing, clean the file if it exists), "a" (writing, but append to its
end if the file exits), etc.

The return value of fopen() is a file pointer, which is defined in stdio.h . The pointer points
to a data object containing information about the file, not the file itself. To declare such a pointer,
simply type

FILE * ptr; // a file pointer

The functions getc() and putc() are like getchar() and putchar() , but the difference is
the new ones work with files. For example,

mychar = getc(fin); // get a character from the file identified by pointer fin

putc(mychar, fout); // put mychar to the file identified by fout

fclose() takes a file pointer as an argument and closes a file. It returns 0 if successful and
EOF it not.

fprintf() and fscanf() work like printf() and scanf() . But the new ones take a file
pointer as the first argument.

fseek() and ftell() work with contents in a file. fseek() is used to set the location where
we are at, and ftell() returns the the number of bytes from the beginning to the current
location of the file. For example,

FILE * ptr;

long current;

ptr = fopen("myfile", "rb"); // read file in binary mode

fseek(ptr, -1L, SEEK_END); // start from end of file and offset is -1

current = ftell(ptr); // assign number of bytes to current

The 1st argument of fseek() is the file pointer, the 2nd argument is the offset with respect to
the starting point (must be type long), and the 3rd argument defines the starting point,
including SEEK_SET (beginning), SEEK_CUR (current), and SEEK_END (end).

There are other functions, such as fgetpos() and fsetpos() , that can be useful.

Other I/O functions mentioned in the book are omitted here.

Structures and Other Data Forms

We can declare a structure by

struct book {

 char title[20]; // title of a book

 char author[20]; // author of a book

 float value; // price of a book

}

To create a structure variable, we write

struct book mybook; // mybook is a variable of book structure

Note that struct book acts like a new type, just like int or float .

To initialize a structure variable, we can write

struct book mybook = {

 "The Title",

 "the author",

 0.25

}

To access an element of the structure, for example title , by

mybook.title; // this is the title, a string

To initialize a structure in a different way, we use

struct book mynextbook = {

 .title = "Next Title",

 .author = "next author",

 .value = 0.2 // we don't have to initialize all 3 elements

}

To declare an array of structures and get access to elements, we use

struct book library[100]; // an array of book structures

// some definitions of the elements

library[14].title; // title of the 15th book

We can also create nested structures,

struct bookcase {

 struct book abook; // suppose struct book is defined

 int index; // index of the bookcase

}

struct bookcase mycase; // declare a bookcase structure

// some definitions

To initialize a structure contained in another structure, we can use {entry, entry, ...} . To
access an individual element, we simply use

mycase.abook.value; // value

To declare a pointer to a structure, we use

struct book * ptr;

* ptr = &mybook; // initialize the pointer

Note that unlike arrays, the name of a structure variable is not the memory address of it. With
the -> operator for pointer, the following are equivalent,

mybook.title; // title of mybook

ptr->title; // equivalent

We can use a structure, a pointer to a structure, or an element in a structure as a function
argument.

We can assign one structure to another structure of the same type, even when the elements
include arrays. (Note that we cannot assign one array to another array).

We can use a compound literal to create a temporary structure,

(struct book) {"Title", "Author", 20}; // not assigned to any variable

There is a flexible array number feature in C99, but it is omitted here.

Other parts will be added later.

